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Abstract. A gentle introduction to the simulation of stochastic differential equa-
tions is presented, with particular attention to the simulation of rare fluctuations, a
topic of interest in the light of recent theoretical work on optimal paths. The “best
algorithm” and some problems connected to the treatment of the boundaries will
be discussed.

1 Introduction

A common denominator of the papers contained in this book is the presence
of stochastic processes, introduced to model a variety of different physical
situations. Unfortunately, the most common situation is that the stochas-
tic model cannot be exactly solved: then, one typically turns to simulations,
analogue or digital, of the system of interest. A very complete review of ana-
logue techniques has recently appeared, and the interested reader is referred
to it for further details [1]. We concentrate here on digital simulations, with
particular emphasis on simulations of rare fluctuations. Rare fluctuations are
fluctuations which bring the stochastic system very far from the phase space
which the system explores most of the time. It is possible to relate the hap-
pening of a rare fluctuation to some building up of an activation energy (one
can think of the energy necessary to overcome a potential barrier, like in a
chemical reaction). The nature of rare fluctuations is such that we should
have algorithms which correctly explore the tails of the distribution func-
tions; we should be able to stop in a correct way our simulation when the
rare fluctuation hits a prescribed boundary in phase space; we should opti-
mise, if possible, our algorithms to situations when the system lacks detailed
balance; and, finally, we should have pseudo random number generators fast
and very reliable, able to provide us with very long random sequences. We
will address all these problems in this paper. For further comments and ref-
erences, the interested reader can consult, among others, [2-5].

2 The Basic Algorithm

A stochastic differential equation has the generic form

B = file) + g@)ED), (€W =0, (EDEE) =dt—5), (1)
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where we assume that the stochastic process £ is Gaussian and that only one
stochastic forcing is present. In the following, we call h the integration time
step, and we use Stratonovich calculus [4]. A simple minded approach to solve
Eq. 1 is to formally integrate it, then to use a Taylor expansion around the
point ¢t = 0, to find recursively the various contributions [6]. Restricting the
discussion to a one dimensional case, the equation has the form

&= f(x) +9(x)&(t) (2)
A formal integration yields
h
z(h) — (0) =/0 (f(2(t)) + g(x())&(t)) dt ®3)
Let us define
9g(=(t))

1l

fo=1(=0) g=—F 57

0 Ox(t) v=(0)
and so on. By Taylor expansion it is meant that the functions are expanded
as fi = fo+ (z(t) —x(0)) f§ + . ... The simple minded lowest order in h seems
to be

h h
2(h) — 2(0) = / (fo + 00£(t)) dt = hfo + go / . (4)

We will see that this is not the correct lowest order in h. For the moment,
note that on the r.h.s. there is a so called “stochastic integral”

h
Zi(h) = / £(t)dt (5)

which is the integral over the time range (0, h) of the stochastic process £(t).
This integral is a stochastic variable, and the integration amounts at adding
up some gaussian variables: as such, Z;(h) is itself a Gaussian variable, or,
in other words, its probability distribution is a Gaussian distribution. This
implies that the probability distribution of Z;(h) is determined once the
average and the standard deviation of the distribution are known. A simple
minded numerical integrator would then be, at each time step: generate a
random gaussian variable, with appropriate average and standard deviation
(to “simulate” the stochastic integral); substitute the stochastic integral on
the r.h.s. of Eq. 4 with this random variable; integrate the equation using any
standard integrator valid for deterministic differential equations. How can
we work out the statistical properties of Z;(h)? As we mentioned, we only
need its average and its standard deviation. Using {...) to indicate statistical
averages,

h
(7) = / (€(s))ds = 0 (6)

h h h h h
(Z2(h)) = /0 /0 (€(s)E(t)) dsdt = /0 /0 5(t — s)dsdt = /0 ds=h. (7)
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If we introduce a stochastic gaussian variable with average zero and standard
deviation one, Y7, it follows that we can write the following representation
for Z1 (h)

Zy(h) = VhYi

meaning that, using this definition, Z;(h) has the correct statistical proper-
ties. We can also rewrite Eq. 4 as

w(h) = 2(0) = hfo + Z1(R)go = hfo + VhgoY1. (8)

A problem is apparent: on the r.h.s., the first term is order of h, but the
second one is order of v/h: in principle, we should insert the z increment
from Eq. 4 in Eq. 3, take one more term in the Taylor expansion, and check
the order of the contribution we get. It turns out that if we do that, the
correct algorithm to first order in A is

2(h) = 2(0) = goZa () + foh + SahgZ: ()? ©)

The higher order terms are obtained by recursion, inserting the lower order
terms in Eq. 3 and collecting the different contributions. Before we write the
algorithm at order of h? (which is the highest order we can get recursively),
let us introduce other stochastic integrals which are relevant. In the following,
Y} is the same stochastic variable used for Z; (h), and Y2 and Y3 are two more
gaussian stochastic variables, with average zero and standard deviation one,
independent of each other. We need

Zz(h)z/ohzl(s)ds:mm{ﬁ Yy }

2 2v3
h ) h2 9 1

Zy(h) = | Zi(s)dsm 5 (Vi Va4 5
0

For additive noise (g(z) = v2D), the h? algorithm reads

z(h) = 2(0) + V2D Z1 (h) + foh + V2D Zx(h) f4 + DZs(h) fi! + h;f(’,fo (10)

We will call this the “Full algorithm”. In the n dimensional case, for one
external stochastic forcing which is additive, i.e. for a system described by

&; = fi(x) + gi&(t)

we find (defining here f; ; = 0f;/0x; evaluated in z;(t = 0) etc., and assuming
a sum over repeated indeces)

zi(h) = z;(0) + g; Z1(h) + fih + Za(h) fik gk +

1 1
ifi,jkgjgkz3(h) + ihZfi,jfj- (11)
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Expressions valid for the more general case can be found in [2]. Other integra-
tion schemes which can be found in the literature are (see quoted references):
Euler scheme: Eq. 10, keeping only the first three terms on the r.h.s..
“Exact propagator”: solve exactly £ = f(z) and then add Z;(h) to take
into account the noise.

Heun scheme: Use the following integrator:

z1 = z(0) + V2D Z1 (h) + foh
#(h) = 2(0) + VEDZ() + » (fo + f(z1))

Some authors have developed Runge-Kutta schemes (see [4]). We will see,
however, that the particular nature of a SDE is such that higher order schemes
may not lead to substantial improvements to the integration.

3 Which Is the “Best” Algorithm?

The problem of the “best algorithm” for a SDE has two aspects: deterministic
accuracy and stochastic behaviour.

3.1 Deterministic Accuracy

One can disregard the stochastic component, and study only the deterministic
integration scheme, using standard techniques. This gives some indications
of the “deterministic accuracy” of the scheme considered. In this case, the
usual machinery (used to work out accuracy, stability etc.) applies. The error
associated with a given integration scheme is easily evaluated; we find the
following;:

Euler scheme: accurate up to O(h).

Exact propagator: no numerical error associated with this algorithm (by
definition).

Heun scheme: accurate up to O(h?).

Full algorithm: accurate up to O(h?).

3.2 Stochastic Behaviour

In this case, one can check the Taylor expansion to judge the short times
dynamics. It is clear then that the best algorithm in this time range is the
“Full algorithm”, given that it was derived as a Taylor expansion of the
stochastic equations. The large times behaviour can be studied, on the other
hand, deriving the equilibrium properties from the propagator used in the
numerical scheme (there are other possibilities: for instance, one can consider
which scheme is the closest to the bona fide trajectory under some measure).
We have in mind the problem of rare large fluctuations, so, as a rule of
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thumb, we should use integrators which reproduce as closely as possible the
large time dynamics, i.e. same equilibrium quantities. Focusing on the large
times dynamics, the idea is to start from a generic form of the integrator,
z(t) = 2(0) + F(z,t), and, for instance, find the equilibrium distribution it
generates; then, compare it to the real one. It follows, writing the propagator,
that [7]

> d d
P(z,t+h) = P(z,t)=>_ > 6—951"'87K1"'"P(w’t) (12)
n=1 z; n

where P(x,t) is the probability distribution generated in the simulations,
starting from an initial P(z,0) and

1

Kl...n = (_l)nm

<F1 - -Fn)noz’se-

At equilibrium, the difference on the Lh.s. in Eq. 12 is zero, and the r.h.s. of
Eq. 12 becomes an implicit equations for P(z,00)). In general, for systems
in detailed balance,

o0
P(x,00)sim = P(x,00)irue X €Xp Z h"™Sn/D
n=1
where all S,, would be zero if the algorithm were exact. Focusing on the
System
= =V'(z) + V2DE(t)
which has the exact equilibrium distribution
P(z,00)true = Nexp{—V(z)/D}

and the actual equilibrium distribution (using the different numerical inte-
gration schemes)

P(z,00)sim = N'exp {(=V(z) + hS(h,z)) / D}.

Carrying out the necessary algebra, it is straightforward to find the function
S(z)

Euler scheme: S(h,z) = (V')> J4— DV"/2

Exact propagator: S(h,z) = (V')* /2 — DV" /2

Heun scheme: S(h,z) = O(h)

Full algorithm: S(h,z) = O(h)

It is clear that the “Full algorithm” and the Heun scheme are the algorithms
which most faithfully reproduce the equilibrium distribution. It is also inter-
esting to note that the “Exact propagator” does not do better than the Euler
scheme: this implies that to derive higher order algorithms it is necessary to
deal with the higher order terms coming both from the deterministic and
the stochastic part of the SDE. But, as we saw in the derivation of the “Full
algorithm”, at order h? we start to have non gaussian stochastic variables
(Z3(h)), so higher order schemes may not be well founded.
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4 The vh Problem and Boundaries

Regardless of the integration scheme used to carry out the integration, there is
an intrinsic problem with a SDE, due to the discreteness of the integration and
to the sampling; this is a problem present even with an ideal integrator [8, 9.
Fig. 1 shows that a stochastic trajectory appears very different over different
time scales (i.e., h’s). The problem is most acute when we need to stop the
integration because a boundary is reached (see the dashed line in Fig. 1),
like, for instance, in a Mean First Passage Time (MFPT) evaluation: the
“decimated” trajectory (a trajectory obtained integrating with a larger h)
simply misses the transition. The cure is simple: we need to evaluate the
probability that the trajectory hit the boundary and came back, within an
integration time step, and thus stop the simulations.

06 q---=-=--P----------.
c 0.4
X
’ —— Trajectory
0.2 — —@— Decimated tr.
- - - - Boundary

I I I I I I
27 28 29 30 31 32
t

Fig. 1. Comparison between trajectories done with different time steps

Following [8], for a system described by the SDE
& = F(z) + V2DE(H), (£(1) =0, (E(0)E(s)) =d(t—s)  (13)

the probability that the stochastic trajectory, which is at z¢ at time ¢ = 0
and at zp at t = h, hit a boundary x; at an intermediate time is given by

: FI; hF} Fy ?
P(hlt) = exp —m mh_$b+($0—$b)e —FI;

1 Fo+F\\’
- (05%)

where Fy = F(xp) etc.. At each integration time step Eq. 14 is evaluated, and
a uniformly distributed random variable is generated in the range (0,1). If

(14)
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the random variable is smaller that Eq 14, it is assumed that the trajectory
hit the boundary and came back, and the appropriate action for reaching the
boundary should be taken.

4.1 Free Diffusion with Absorbing Boundaries

As a test system we take a bunch of particles injected at the x = 0, which
can freely move in one dimension, until they reach the boundaries, located
at L, where they are absorbed [9]. The ruling SDE is

6 —
5 — O D=1.0
1 D=0.1
47 D=0.01
D=3.16
s 37 D=0.316
F + D=0.0316
) —— finite h theory
F2 O D=1.0 + corrections
- - - h=0 limit
o
} 0]
1 ; -6 ©-0-0 ©-G-© -
I I I I I I
10° 10" N 2 100 10°

107 10
h/ 1(0)
Fig. 2. MFPT for a particle freely diffusing to a boundary

&= V2DE(t), (E() =0, (E(s)E()) = d(t — 5)- (15)

For h = 0, the MFPT to the boundary is 7(0) = %,
it becomes [9]

7(h)/7(0) = 1 + \/32/97/h/7(0). (16)

Figure 2 shows that indeed the MFPT’s simulated without correction follow
Eq. 16. As soon as the correction for the finiteness of the integration time
step is introduced, the agreement between simulations and h = 0 theoretical
MFPT becomes excellent (lower circles). Let us stress that the integration
of this dynamical system is exact, due to the structure of Eq. 15, so the
discrepancy observed for finite integration time steps is due to the sampling.

whereas, for a finite h,
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4.2 MFPT in a Bistable System

Given that the contribution to the MFPT which goes like v/A is due to the
finiteness in the sampling of the stochastic trajectory, we expect that a similar
contribution will show up in any MFPT calculation. We plot in Fig. 3 the
MFPT to escape from z = —1 to z = 0 in the system

&=z —a° +V2DE(t), (E(1) =0, (E1)&(s))=6(t—s). (17)
Theoretically, the MFPT in the limit of h — 0 should be

MFPT(h = 0) = % exp (%) (18)

From the figure, it is clear that the MFPT’s computed without any correc-

T T T T T T T T T T T T —
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~ 15F 2
Q + D=0.07, raw
é 1.4 O D=0.05, raw i
E J D=0.04, raw
Y I fit to raw data 7 ]
= vV D=0.10, corrected Py
g 12k < D=0.05, corrected >< |
e A D=0.04, corrected 0.
o .
c ! .
1.1+ - i
X4
><+...,..D. ................. +
o D - )
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456 > 3 456 e
0.001 0.01 o1

Fig.3. MFPT in the system of Eq. 17

tion show a square root dependence on the integration time step (best fit).
However, when the additional stochastic process to simulate the h — 0 limit
is introduced, the numerical points show no dependence on the integration
time step. It is important to appreciate that from the structure of Eq. 18 one
could believe that, as D becomes smaller, the correction to the MFPT due
to the finiteness of h should become negligible compared to the MFPT itself.
Fig. 3 shows that the opposite is actually true: MFPT’s computed for differ-
ent h’s and D’s scale on the same curve, when plotted against h/ V/D: this
means that if h is kept constant, the MFPT’s simulated without corrections
differ, proportionally, more and more from the theoretical ones, as D is made
smaller. For more examples, see [8]. The SDE in Eq. 17 was integrated using
the Heun algorithm. The statistical error associated with the finite number
of trajectories is order of the symbol dimensions.
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5 Non-white Noise

So far we have considered stochastic differential equations driven by white
noise. Noise in real systems, however, is very often far from white. An in-
teresting class of noise correlations is noise which can be written in terms of
linearly filtered white noise. The simplest one of these noises is the exponen-
tially correlated gaussian noise

D t—s
() =0, (o) = Zexp (-=21) (19)
or, in term of its spectral density,
D
A 2 _
|77(w)| - 71'(]. +w27_2)‘ (20)

The variable n(t) can be written in terms of a filtered white noise as fol-
lows [10]

£(t), (@) =0, (£@)&(s)) =dt—s)  (21)

Suppose we have a dynamical system driven by additive exponentially corre-
lated gaussian noise (£(t) will be the usual white gaussian noise with standard
deviation one)

&= f(z) +y
i=—Ly+ ) (22

We could use Eq. 11 (or any other algorithm) to integrate Eq. 22. However,
if ¢, is the shortest time scale of the dynamical system in Eq. 22, the inte-
gration time step h should be chosen so that it is much smaller than both ¢,
and 7. Now, in cases when 7 is much smaller than ¢,, it is clear that, making
h < 7, we would be using all the computing power to integrate the equa-
tion describing the exponentially correlated noise, rather than the dynamical
system itself.

We recall that Z; (Eq. 5) was obtained adding up some gaussian stochas-
tic processes: now, the structure of Eq. 22 is such that y is itself a linear
combination of stochastic random gaussian processes (£(t)), via a filter with
time scale 7. So, it should be possible to use the “Full algorithm” or the Heun
algorithm, but with a somehow modified Z;(h). This idea has been exploited
in [11]. Eq. 22 can be immediately integrated, to yield (exactly)

0 [

y(t) =e * (23)
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Let us now define some quantities which will be needed further down, namely

h
wo E/ es:hf(s) ds
0

hopto
w; = / / e &(s)dsdt
o Jo

(67

NS>

Clearly, wo, and w; are gaussian variables (they are linear combinations of
gaussian variables), with zero average and unknown correlations. Working
out the algebra [11], which parallels the algebra carried out to derive Z;, the
result one obtains is summarised in Table 1. From the table, if the correlation

11)0/7'1/2 11)1/7'3/2
wo /7> s(1—e?) F(1—2"%+e )
w /737 1(20—3—e " +4e7%)

Table 1. Correlations for the stochastic variables in the exponentially correlated
algorithm

of wy with wq is needed, taking the quantity where the row and the column
labelled wq cross, one can write

W Wo _ 1 _9
<7.1/2 7.1/2> ) (1—-e™)

which yields
(wp) =

and so on. We can now write

(1= )

NS

) = 90 + 22y

h
Zy(h) = /0 y(s)ds =71(1 —e *)y(0) + @wl (24)

and, if Yy and Y; are two independent gaussian variable with zero average
and standard deviation one, we can finally write

wo = 1/ (w§)Yo

_ (wown)

(wg)

2y - forwo)”

P Ty

Y;.
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In principle, we need the expressions for Z2(h) and Zs(h). Z2(h) was derived
in [11]: however, it turns out that for the exponentially correlated noise case
the Heun algorithm is faster than the “Full algorithm”, and have a compa-
rable precision. So, it is suggested to use the Heun algorithm, integrating
Eqgs. 24 to get the Z;(h) needed at each integration time step. Other noise
spectral densities were considered in [12,13]. For general algorithms and fur-
ther comments, see also [4,14,15].

6 Random Number Generators

It should be born in mind in the integration of a SDE that a good pseudo
random number generator is more important than an efficient integration
algorithm. So, particular care must be taken when implementing the code,
and the literature should be searched for good generators. There are classical
algorithms, like the Box-Muller algorithm [16], to obtain gaussian random
variables from uniformly distributed generators; an interesting rejection al-
gorithm (which is faster than the Box-Muller) is the Ziggurath algorithm [17].
Algorithms based on adding a number of uniformly distributed random num-
bers to obtain a gaussian random number via the central limit theorem should
be avoided: they are slower than the Box-Muller, and the generated distribu-
tion of random numbers shows a clear cutoff in the tails. There are a number
of algorithms to generate a uniformly distributed pseudo random number.
The state of art seems to be algorithms based on the so called subtract and
carry [18,19] or add and carry [20] algorithms: given their characteristics,
these algorithms are particularly well suited in the simulation of rare fluctu-
ations.

7 Conclusions

We have shown that it is possible to have integrators for SDE which are
able to reproduce the equilibrium properties of a dynamical system to a high
accuracy in the integration time step: such integrators are ideal to study
long times dynamics of phenomena like a large rare fluctuation. We have
shown that it is possible to simulate properties of a zero integration time
step process, which implies that we are able to determine with high accuracy
when a stochastic trajectory reaches a given threshold. Dedicated algorithms
can be derived in case of noise which is filtered through a n poles filter,
speeding up the simulation for these special cases. Finally, some indications
as to pseudo random number generators suitable for the case at hand have
been given.
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