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Abstract. In this lecture we will consider the minimum weight spanning tree (MST)
problem, i.e., one of the simplest and most vital combinatorial optimization problems.
We will discuss a particular greedy algorithm that allows to compute a MST for undi-
rected weighted graphs, namely Kruskal’s algorithm, and we will study the structure
of MSTs obtained for weighted scale free random graphs. This is meant to clarify
whether the structure of MSTs is sensitive to correlations between edge weights and
topology of the underlying scale free graphs.

The lecture is supplemented by a set of Python scripts that allow you to
reproduce figures 4 and 5 shown in the course of the lecture. The supple-
mentary material can be obtained from the MCS homepage (see Ref. [1]).
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Minimum weight spanning trees (Melchert)

1 Recap: Nodes, Edges, and Graphs

Nodes: A node set V is a collection of elements i, termed nodes (also called sites or
vertices). The number of nodes in a node set is subsequently referred to as N = |V |.

Edges: An edge (or arc) eij consists of a pair of nodes i, j ∈ V . Edges can either
be directed or undirected. In the former case the corresponding node pair is ordered,
i.e., eij =(i, j) with (i, j) 6=(j, i), while in the latter case the node pair is unordered,
i.e., eij ={i, j} with {i, j}≡{j, i}. In the following, if not stated otherwise, the term
edge will always refer to an undirected edge, i.e., eij = {i, j}. The edge eij is said to
be incident with the nodes i and j and it joins both nodes. Two distinct nodes are
said to be adjacent, if they are incident with the same edge. Similarly, two distinct
edges are adjacent, if they have a node in common.

Consequently, an edge set E is a collection of elements eij with i, j∈V . In what
follows, E is not allowed to contain self-edges, i.e., edges of type eii, or multiple
parallel edges. The number of edges in an edge set is referred to as M = |E|.

Graphs: A graph G=(V,E) is a tuple that consists of a node set V and an edge set
E. Depending on the characteristics of the edge set, a graph can either be directed
or undirected (see Fig. 1(a),(b)). In the following, if not stated otherwise, the term
graph will always refer to an undirected graph.

Within a graph, a particular node can have several adjacent nodes, given by the set
adj(i)={j | eij ∈E}. In this context, the degree d(i)= |adj(i)| of node i measures the
number of its neighbors. Regarding directed graphs, one might distinguish between
the in- and out-degree of a node, e.g. node 3 of the directed graph in Fig. 1(b) has
dout(3)=1 and din(3)=2 while the corresponding node in the undirected graph (Fig.
1(a)) simply has d(3)=2.

Further, mappings can be used to relate additional information to the graph.
Therefore, nodes as well as edges can be addressed. E.g., a weight function ω : E → R
can be used in order to assign a certain weight ωij ≡ω(eij) to each edge eij ∈E, see
Fig. 2. Such a weight might be interpreted as distance between the two nodes or as
a cost to get from one node to the other. The triple G = (V,E, ω) is then called a
weighted graph.

A subgraph Gsub =(Vsub, Esub) is obtained from a graph G by deleting a (possibly
empty) subset of its nodes and edges. That means, for a subgraph it holds that
Vsub⊆V and Esub⊆E.

A cut (C, V \ C) on an undirected graph G = (V,E) is a partition of its nodeset.
An edge {i, j} ∈ E crosses the cut if i ∈ C and j ∈ V \ C (or vice versa). A cut

2

1

2

3

1

3
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Figure 1: Directed and undirected example
graphs. (a) undirected graph with node set V =
{1, 2, 3} and edge set E = {{1, 2}, {1, 3}, {2, 3}},
(b) directed graph with node set V ={1, 2, 3} and
edge set E ={(1, 2), (1, 3), (2, 3), (3, 2)}.
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2 Minimum weight spanning trees (MSTs)

respects a subset Esub ⊆ E if there is no edge in Esub that crosses the cut. An edge
{i, j} is called candidate regarding the cut (C, V \ C) if it crosses the cut and has
minimum weight amongst all edges that cross the cut. As an example consider the
cut (C = {0, 1, 2}, V \ C = {3}) (the nodes in the set C are colored in grey) in Fig.
2(a). Therein, the edges {1, 3} and {2, 3} cross the cut. Amongst those two, {2, 3}
signifies the candidate edge since it has the smaller weight.

2 Minimum weight spanning trees (MSTs)

Given an undirected, connected and weighted graph G = (V,E, ω) where N = |V |
and M = |E| signify the number of nodes and edges of G, respectively, and where ω
assigns a weight to each edge. Compute a “minimum weight spanning tree” T [2–4].

Minimum weight spanning tree (MST): A MST T is a connected, loopless
subgraph of G, consisting of (N−1) edges, connecting all N nodes, thereby minimizing
the sum of the edge weights. Note that there are several ways to represent a MST.
Here, we will represent it by means of the set T of edges from which it is build
up. For the small undirected graph shown in Fig. 2(b), the MST (indicated by
bold black lines) reads T = {{0, 1}, {1, 2}, {2, 3}} and its corresponding weight is
ωT =

∑
{i,j}∈T ωij = 3. Depending on the precise topology of G and the distribution

of edgeweights, T is not necessarily unique.

Relevance of the MST problem: The minimum weight spanning tree (MST)
problem is one of the simplest and most vital combinatorial optimization problems.
As such, it arises in a vast number of applications. Either as a “standalone” problem
or as subtask of a more intricate problem. The generic problem that is solved by an
MST algorithm reads: “Connect a set of points using a minimum-weight set of edges”.
As such, broadcasting problems on networks typically relate to finding the MST on an
appropriate weighted graph. E.g., consider a network where the edgeweights signify
time delays (or transmission costs) between the respective incident nodes. Then,
an “efficient” or “optimal” broadcasting of a message is made sure if the message is
transmitted along the MST edges. The latter connects all nodes by using as few edges
as possible, thereby minimizing the total time delay (or transmission cost). Further,
MSTs find application in the context of single linkage cluster analyses [5].
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(a) (b) Figure 2: (a) The dashed line illustrates
the cut ({0, 1, 2}, {3}) (for more details,
see text). (b) example of a MST (bold
black lines) for a small undirected weighted
graph.

3



Minimum weight spanning trees (Melchert)

3 Computing MSTs via a “greedy” strategy

Greedy problem solving strategy: At any time (during the solution procedure
for a given problem) where a decision is required, a greedy problem solving strategy
makes the locally optimal choice. Further, unlike in backtracking approaches, once
a decision is made it is not revised later on. Albeit such an approach might fail to
find a globally optimal solution for your particular optimization problem, an optimal
solution for the MST problem can very well be obtained via efficient greedy algorithms.
A generic greedy approach to compute a MST for a given network G reads:

algorithm MST greedy(G)

1: T = {}
2: while T is not a MST do
3: pick feasible edge e ∈ E \ T
4: T ← T ∪ e
5: end while
6: return MST T

Cut-property: In the above pseudocode the tricky part is to find proper selection
criteria for the edges that are added to the MST. In this regard, a feasible edge has
to satisfy the cut property : Consider a weighted undirected graph G = (V,E, ω). Let
T ′ ⊆ E so that there is a MST T ⊃ T ′. Further, let (C, V \C) be an arbitrary cut that
respects T ′ and let {i, j} be a candidate regarding the cut. Then {i, j} is a feasible
edge that can be used in order to extend T ′. E.g., regarding the cut illustrated in Fig.
2(a), the edge {2, 3} is a feasible edge that can be used to amend (and also complete)
the MST.

4 Kruskal’s algorithm

Idea behind the algorithm: The algorithm due to Kruskal [2] is a particular
greedy algorithm that, for an instance of an undirected, connected and weighted
graph, obtains a MST. The subsequent three steps summarize the solution strategy
of Kruskal’s algorithm:

Step 1: In the beginning, each node forms a tree. Hence, there is a forest of N
single-node trees. Further, an empty list T is initialized that will keep all those
edges that are part of the MST.

Step 2: Sort the edges in order of increasing weight. Visit the edges in order of
increasing weight and apply the following edge-selection criterion:

Step 3: If the currently considered edge {i, j} has both endnodes in different trees,
add the edge to T and merge the respective trees. If {i, j} has both endnodes
in the same tree, discard the edge. Proceed to the next edge or stop when there
are no more edges to process.
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4 Kruskal’s algorithm

After M iterations of step 3 (i.e., as soon as all edges are processed), T comprises the
edges that comprise the MST.

Efficient implementation: Albeit the pseudocode and the description above seem
to be very simple, an efficient implementation of Kruskal’s algorithm is more tricky
than it appears at first sight. In this regard, step 2 can be accomplished by using
merge-sort yielding a sorted edge list in time O(M log M). Further, in step 1 single-
node trees (one tree for each node in the graph) need to be initialized, and in step 3
it must be possible to efficiently determine the tree to which a node belongs. Finally,
two selected trees need to be merged to a single tree, occasionally. These latter three
tasks can be handled by using a union-find data structure that features the following
three operations:

Operation 1: make set(i): Generates a tree consisting of the node i, only

Operation 2: find(i): Yields the “name” of the tree to which node i belongs

Operation 3: union(a,b): Merges trees with names a and b to a new tree with
name a

For a connected graph, the total time for the union-find operations (i.e., N make set
operations and O(M) find and union operations) can be approximated by O(M log M)
(note that this also depends on the precise implementation of the union-find data
structure [3]). The full (worst case) running time of Kruskal’s algorithm amounts to
O(M log N). It summarizes the time spent to sort the edges, perform M find and N−1
union operations. A python [6] implementation of Kruskal’s algorithm is contained in
the supplementary material [1]. Generically, python uses Timsort [7], a hybrid sorting
algorithm based on merge sort and insertion sort [3]. Further, the implementation of
the union-find data structure contained in the supplementary material uses union-by-
size: if two trees are merged by means of a call to union, the smaller tree (in terms of
the number of nodes contained in the tree) is added to the larger tree. A particular
implementation might read (see [3]):

def mstKruskal(G):
"""Kruskals minimum spanning tree algorithm

algorithm for computing a minimum spanning

tree (MST) T=(V,E’) for a connected, undirected

and weighted graph G=(V,E,w) as explained in

’Introduction to Algorithms’,

Cormen, Leiserson, Rivest, Stein,

Chapter 23.2 on ’The algorithms of Kruskal and Prim’

Input:

G - weighted graph data structure

Returns: (T,wgt)
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Figure 3: Exemplary application of Kruskal’s MST algorithm on a small example
graph G consisting of 6 nodes and 9 edges. The bold black edges belong to the forest
that is grown in order to construct an MST of G. In the course of the algorithm
each edge is considered once (within the subfigures (a–f), a small arrow indicates
the edge currently considered). For each edge it is decided whether it can be used
to extend the forest constructed so far in order to yield an MST. For more details
on the steps (a) through (f), see text.

T - minimum spanning tree stored as edge list

wgt - weight of minimum weight spanning tree

"""

uf = unionFind_cls() # union find data structure

T=[] # list to store MST edges

# list of edges sorted in order of increasing weight

K = sorted(G.E,cmp=lambda e1,e2: cmp(G.wgt(e1),G.wgt(e2)))

# initialize forrest of sinlge-node trees

for i in G.V:
uf.makeSet(i)

# construct MST

for (v,w) in K:
if uf.find(v)!=uf.find(w):

uf.union(uf.find(v),uf.find(w))
T.append((v,w))

return T, sum(map(lambda e: G.wgt(e),T))

Example graph: In order to illustrate Kruskal’s MST algorithm, consider the small
graph G = (V,E, ω) consisting of N = 6 nodes and M = 9 edges, shown in Fig. 3(a–
f). In a first step, the graph edges are sorted in order of increasing weight, i.e., the

6



5 MSTs of weighted scale free networks

set K reads:

K = {{5, 6}, {2, 3}, {1, 2}, {4, 5}, {4, 6}, {3, 5}, {1, 3}, {2, 5}, {2, 4}}

Then, as a second step, the function make set is used to initialize a forest of trees.
In the very beginning, each tree consists of a single node, only. In the third step, the
edge selection procedure is carried out until all edges are processed. In detail, the
following steps (illustrated in Fig. 3(a–f)) are carried out:

Step (a): Edge {5, 6} is considered. It can be used to merge two distinct trees in
the forest and is hence added to T .

Step (b): Edge {2, 3} is considered. It can be used to merge two distinct trees in
the forest and is hence added to T .

Step (c): Edge {1, 2} is considered. It can be used to merge two distinct trees in
the forest and is hence added to T . Note that {2, 3} and {1, 2} had the same
weight. However, no matter which of the two edges is picked first does not alter
the structure of the final MST.

Step (d): Edge {4, 5} is considered and added to T .

Step (e): Edge {4, 6} is considered. It does not connect two distinct trees. Adding
it to the forest would introduce a cycle. Hence, the edge is not added to T and
the algorithm proceeds to the next edge in K.

Step (f): Edge {3, 5} is considered and added to T .

All remaining edges would also lead to a cycle (as in step (e) above) and are hence
not added to T . Finally, after the algorithm terminates, the edgeset T comprises a
MST with weight ωT = 22.

5 MSTs of weighted scale free networks

The subsequent simulations, reported in Ref. [8], were carried out to clarify whether
the structure of MSTs change as a function of the correlations between edge weights
and network topology. (Here, as an exercise, I re-implemented the model studied
in Ref. [8] and re-performed their simulations and analysis. The resulting code is
available as supplementary material at [1]. The figures presented below summarize
the results of the simulations performed via the code in the supplementary material.)

Simulation setup: For the numerical experiments scale free (SF) random networks
were considered. These networks (also referred to as heterogeneous random graphs)
are characterized by a power-law degree distribution pk ∼ k−γ . The construction
of such SF networks via preferential attachment [9] yields an exponent γ = 3. In
particular, SF networks containing N = 10000 nodes were used (the number of edges
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Minimum weight spanning trees (Melchert)

connecting a newly created node to existing nodes during the preferential attachment
procedure was set to m = 2).

Further, two qualitatively different weight distributions were considered (note that
the authors of Ref. [8] considered more weight distributions, however, the two weight
distributions considered here suffice in order to answer the question that kicked off
the study):

Disorder type 1:

ωij = kikj , (1)

where the weight associated to edge {i, j} is large if the degrees of its endnodes
tend to be large, and,

Disorder type 2:

ωij = 1/kikj , (2)

where the weight related to an edge {i, j} is large if the degrees of its endnodes
tend to be small.

For SF networks respecting the above two weight distributions, MSTs are computed
using Kruskal’s algorithm (in the original article they use a different MST algorithm
due to Prim [3]) and the characteristics of the MSTs is studied.

Results: Considering the degree distribution of the nodes regarding the MSTs, the
results indicate that the topology of the MSTs falls into two distinct classes:

1. Disorder type 1 (Eq. (1)) yields MST with exponential degree distribution. The
MST avoids edges with large weight, preferentially using edges that connect to
low degree nodes (see Figs. 5(a) and 4(a)).

2. Disorder type 2 (Eq. (2)) yields MST with power law degree distribution. Edges
with lowest weight are connected to the hubs of G. The MST uses these edges
extensively (see Figs. 5(b) and 4(b)).

(a) (b)

Figure 4: MST of weighted scale
free graphs (N = 500, m = 2).
The size of the nodes reflect their
degree in G. (a) Disorder type (i):
most hubs are located on the outer
branches. (b) Disorder type (ii):
hubs of G are at the center of the
MST, intermediate degree nodes (in
G) are located on the branches of the
MST.
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Figure 5: Results for the MSTs computed for weighted scale free graphs (N =
10000, m = 2). (a) degree distribution for weight assignment ωij = kikj , (b) degree
distribution for weight assignment ωij = 1/kikj , (c) weight distribution for weight
assignment ωij = kikj , (d) weight distribution for weight assignment ωij = 1/kikj ,
(e) MST efficiency.
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Considering the weight distribution of the edges that comprise the MSTs, the
results show that

1. Disorder type 1 yields MSTs with a power law weight distribution (see Fig.
5(c)).

2. Disorder type 2 yields MSTs with an exponential weight distribution (see Fig.
5(d)).

A measure that tells how efficient a MST connects the nodes of a graph G is
given by the MST efficiency α = ωT /ωG. Where the numerator signifies the weight
ωT =

∑
{i,j}∈T ωij of the MST, and where the denominator specifies the weight of

the graph ωG =
∑

{i,j}∈E ωij . The numerical results regarding the MST efficiency
are shown in Fig. 5(e). As evident from the figure, disorder type 1 exhibits a power
law decrease of the efficiency with increasing graph size. In contrast to this, the MST
efficiency for disorder type 2 saturates at a finite value of α. This suggests that MSTs
for disorder type 1 are more efficient than those obtained for disorder type 2.
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