How many steps does an average self-avoiding walk last?

Assignments related to the Lecture “Basic data analys: A guided tour using python”

O. Melchert, C. Norrenbrock

General topic

The subsequent assignments are related to the self-trapping effect that induces a strong
localization of (genuine) self-avoiding random walkers on the square lattice, as discussed
in the article “An average self-avoiding random walk on the square lattice lasts 71 steps”
by S. Hemmer and P. C. Hemmer, published in J. Chem. Phys. 81, 584 (1984).

Motivation

A (genuine) self-avoiding random walk (SAW) on a square lattice might end up in a
trapped state from which it cannot proceed further (see Fig. 1). For small walk-lengths,
the probability ¢(n) for ending up in a trapped state after n steps can be found exactly.
E.g. one finds ¢(6) =0, ¢(7)=2/729. For larger values of n, a “combinatorial explosion”
makes it hard to analyze the possible paths by analytic means. Consequently, an analysis
of t(n) for larger values of n requires Monte Carlo simulations.

Problems

Copy the .tar-archive ASSIGNMENT_LENGTH_SAW.tar from the shared folder share/Melchert
to your computer and untar the archive by typing

$ tar -xvf ASSIGNMENT_LENGTH_SAW.tar

Enter the unpacked folder and have a look at the script saw_fragment.py that imple-
ments the code for the simulation of SAWs on a 2D square lattice. The class Walker
generates an instance of a SAW and reports its length n and the geometric distance R
between its starting and trapping point. Use the above script to generate a number of

Figure 1: The figure illustrates a
single self avoiding walk on a 2D
square lattice that got trapped af-
ter n = 161 steps. The open
(closed) circle indicates the start-
ing point (end point) of the walk.



N = 10° SAWs and store the resulting values for n and R in a file. To do so, use the
command line and write:

$ python saw_fragment.py O 100000 > saw_2dSquare_s0t100000.dat

By completing the following tasks you will put under scrutiny the statistical properties
of the SAWs.

Task 1: Complete the script Taskl_fragment.py that handles the analysis of the walk
lengths in order to perform the following analysis:

e Determine the average SAW length av(n) and the average geometric distance
av(R) between the starting and trapping point.

e What are the median walk length med(n), the median absolute deviation
mad(z) (i.e. a robust estimator for the sample variability) and the longest
SAW length npax encountered?

e Compute the most probable SAW length n’ and estimate an error for that
observable using bootstrap resampling considering 20 resampled datasets.

Hint: for an ordered sample = {z;}}; of samplesize N (71 (zn) = smallest
(largest) encountered value), the median is defined as

med(z) 0.5 % (zn/2 + Tnj241), if N is even, (1)
€Tr) =
T(N+1)/2> if N is odd.

Using the median, the median absolute deviation (i.e. a robust measure of the
variability in the dataset) is given by

mad(z) = med({abs(x; — med(z))}) (2)

Note that the absolute value of, say, a variable x, can be computed via the function
abs(x), right away.

Task 2: The function basicStatistics described in the lecture notes computes the
average of a sample by summing up the elements and dividing by the sample
size. Now, given a probability mass function (PMF), it is possible to compute the
average according to:

av(z) = szajz (3)

where x; signifies the unique values in the PMF, and where p; = px (X = z;).
Consequently, the wuncorrected variance can be computed as:

uVar(z) = sz(xl — ,u)2 (4)



Consider the script Task2_fragment.py and complete the two functions pmfAv and
pmfUVar that take a PMF (constructed from the raw data by means of the function
getPmf) and compute the mean and variance. In order to test both functions use
the SAW raw data to check whether they yield the same results as obtained by
means of the function basicStatistics.

Task 3: (Bonus) Previous simulations suggest an approximate expression t(n) ~ (n —
A)*exp (—n/p) for the probability of ending up in a trapped state after n steps.
Perform a fit (e.g. using Gnuplot) to determine the parameters A, a and 3. What
is the meaning of 37

Task 4: (Bonus) Perform a similar analysis for the lengths of SAWSs on a 2D 8-neighbour
lattice (amend the script saw_fragment.py accordingly). How does ¢(n) change
qualitatively and what are the values for av(n), nmax, av(R), and (3 in this cases?



